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ABSTRACT

A new method of numerical solution for time-harmonic

field scattering problems involving inhomogeneous bodies of

revolution is presented. A simple single-loop multiport

feedback system is driven by the incident field. The forward

path transfer matrix, found by use of the finite-element

method, translates the total near-field into the body-surface

field. The feedback path matrix is established by the magne-

tic vector potential formulation; it translates the body-

surface currents into the scattered near-field. The thin-

wire scattering problem is formulated in terms of this field

feedback method. Results of this computation are compared in

graphical form to those found by Hallen's integral equation

solution of the scattering problem for several cases of

interest.
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I. INTRODUCTION

The objective of this endeavor is to investigate the per-

formance of a new, and potentially quite powerful, technique

for the computation of electromagnetic scattering problems.

For reasons that will later become apparent, this new technique

3will be denoted the "field feedback formulation" (FFF or F3).

3The work reported here is a first application of F , where

the calculation of scattering from straight thin-wires has

been performed. This is an almost classical electromagnetic

field problem that has been routinely solved by use of inte-

gral equations for many years. Such a cononical problem was

chosen as a testing vehicle for the newly conceived F
3

analysis method since alternate integral equation solutions

are readily available for comparisons.

The formulation developed here employs a combination of

the finite element numerical method and the classical magnetic

vector potential. The finite element method (FEM) is an

application of variational techniques which implements a

weighted residual approximation. The high accuracy of the

finite element method is used to advantage in reducing the

amount of computing required, as compared to other numerical

methods. Use is also made of coupled azimuthal potentials

(CAP). The CAP formulation restricts the class of approachable

6



problems to those which are axially symmetric, but does allow

the treatment of material inhomogeneities and multiwavelength

dimensions.

Thin-wire assumptions are made which greatly simplify

the current-scattering problem. These assumptions, however,

are by no means critical to the solution method. The formu-

lation should be readily extendable to a large class of impor-

tant interior, radiation, and scattering problems.

7
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-I II. THE PROBLEM AND METHOD OF SOLUTION

Electromagnetic scattering problems usually involve

a known incident field, such as a uniform Dlane wave. The

scattered field can be found from the current induced by the

presence of the incident field, but the induced current can

be found only after the total field is known. Since the

total field is just the sum of the incident and scattered

fields, a definite difficulty has been encountered. Know-

ledge of the induced current is needed to find the scattered

field, while at the same time, the scattered field must be

known to determine the induced current.

This is clearly seen in the form of Maxwell's equations

for the scattering problem. Assume that a scatterer with

properties Y1 = 1 +jWe1 , Z1 =jwu, is in free space where

Y o=jwp0, Zo=jwpo0, and in the presence of sources Jo, M o

Then the curl equations have the form

VxH = 7o+Y (la)

VxE = -Mo-AIH (lb)

where the induced electric and magnetic currents are

(Y -Yo) (2a)

CZ 1-z 0)RM1 :(l-oH

8
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and the scattered magnetic field is

scat incident (3)

The electric field relationship is, of course, similar.

The simple and compact nature of the simultaneous equa-

tions (1) and (2) is highly appealing, but of little practi-

cal use in obtaining numerical answers to a problem because

of the excessive computing required. Yet, while the require-

ment to have two unknowns cannot be escaped, the equations

relating these unknowns can at least be rendered more

tractable.

A. THE FIELD FEEDBACK FORMULATION

As will be shown later, two simple matrix equations can

be derived which relate the magnetic and electric fields at

a number of points along the surface of the scatterer to the

fields at points along a boundary some distance away. These

equations are independent and work in opposite directions.

That is, from the first equation, given the total boundary

field values, e and hi, the scatterer surface total field

values, e and h , can be found:

[e h ]T = V [e h ]T (4a)

The column vectors, [e. h.]T, contain the field values at the

computation points. The second equation takes [e,:h ]T and

yields the scattered field values [e sh T along the boundary:

9
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T
[es:hs] T [e(4b)

Equations (4a), (4b), and (3) comprise a simple feedback

system, as in Figure 1.

Figure 1. Field Feedback

What remains, then, is to construct the matrices V and T

to fit the problem at hand. It should be pointed out that

the magnetic field alone is involved in the wire-scatterer

problem as developed here. So [e~hx]T is replaced by h.
x -x

The field translation matrices V and T, though developed in

exactly the same way, will be considerably simplified as

compared to the general scatterer case.

B. TIE WIRE SCATTERING PROBLEM

Given a perfectly conducting thin wire in free space, and

a plane wave of known amplitude incident from a known direction,

it is required to find the current induced on the wire and the

i0
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Ki field scattered by the wire at any point in space. Finding

the induced current is emilvulent to finding the field on the

wire z..iface, since J = n x H , where n is the unit vector

normal to the surface. Normalized coordinates will be used

throughout the problem, and are given by

(R,Z,O) = (K0 r, K0 Z, 0).

The coordinates (r,Z,t) are standard circular cylindri-

cal coordinates, and K° =27/X is the free space wavenumber of

the time-harmonic field. The situation is depicted in

Figure 2. Use of these normalized coordinates will allow

the formation of a compact and useful form of the CAP equations.

The wire radius is a, given in terms of X the free space

wavelength. Then the normalized radius is R 27a/X . The

wire length is L, also given in wavelengths. So Z= 2-rL/X
L o.

The incidence angle of the plane wave is a, measured as

shown in Figure 2. Since perfect conductivity is assumed,

fields and currents will exist only on the surface of the

wire. And since a very thin wire will be assumed, where a

<X /10, the current at the wire ends may be set to zero.0

The problem will not be solved in terms of the usual

electric and magnetic fields, f and ff, or the scalar poten-

tial, V. Instead, use will be made of the magnetic vector

potential, T. The current and scattered fields will be

presented and calculated in terms of the CAP formulation

discussed below.

11
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Figure 2. Normalized Coordinates

C. COUPLED AZIMUTHAL POTENTIALS

The CA? formulation £3] has been developed to handle

previously intractable time-harmonic field problems involving

continuously and discretely inhomogeneous bodies ofl revolu-

tion. With this limitation of axial symmetry, all electro-

magnetic field components can be expanded via exponential

Fourier series in the coordinate. The model fields can

then be represented by two coupled azimuthal potentials.

These potentials satisfy a system of coupled partial differ-

ential equations, as well as a variational criterion, which

will be developed here.

Using the normalized coordinates in Figure 2, the total

fields are decomposed into azimuthal modes:

12
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E(R,Z,p) : (R,Z)exp(jm4) (5a)

m= -00

no (R,Zp) = 1] Fm(R,Z)exp(jmp) (5b)

m=l -CO

where n o1207. By substitution of these expansions into

Maxwell's equations, it can be shown that all modal field

components can be generated from two coupled azimuthal

potentials I(R,Z,m) and t 2(R,Z,m), using

x em = jfr(m~xVj 1 - RVIrV 2 ) (6a)

em: i/R (6b)

x hm : jf 1(m bX +RE (Sc)

h = C2/R (6d)

where ¢ is the unit azimuthal vector, V is the two dimen-

sional gradient operator, and

fm [R,Z]:Ir (R,Z)e r(R,Z)R 2-m2 ] (7)

The Euler-Lagrange variational technique will be dis-

cussed more fully in the exposition of the finite element

method below. It is sufficient to note here that this tech-

nique finds the solution of the system partial differential

13



equations as the stationary point of a functional of the

potentials and their first derivatives. This stationary

point is defined as the point (i 0' P 20 ) at which the

variation of F, SF, vanishes for perturbations (6 Il 6Y 2

about that point.

The functional F is a surface integral of the Lagrangian

L, where

L = f mV~l'(RerV !+m7+xp2)+7 2,(RUrJi 2-m~x7,l ) ]

- (r l2+ j rP2 2)/R (8)

The functional F is integrated over the constant azimuth

planar meridian cross section Q of the volume in which the solu-

tion is of interest.

It is convenient at this point to change variables, and

introduce a simplifying assumption. From (6b) and (6d) we

have e m(RZ)= I/R and h m(R,Z) w2 /R. So finding only the

azimuthal components of the modal fields, e m and hOm, will

yield a complete solution through (6a) and (6c). Now, since

a thin wire is assumed, the phase variation of the incident

field from side to side on the wire may be neglected. Then

the induced current will be a function of Z alone; J=JzZ.

Therefore the scattered fields will be azimuthally invariant,

so that E(R,Z,O) = 0 (R,Z) and n o(R,Z,O)=h (R,Z). Further-

more, since JZ=nH=H Z and since

14
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it follows that e., = 0, and ho = h " The number of modes

has now been reduced to one, the h o mode.

Observe that (6a) and (6c) no longer involve coupled

potentials. This allows the Lagrangian to be decoupled, and

it may now be written

L = f {V(Rh )*[R rV(Rh )1}-1 Rh 2. (9)o 00 lir 00 r 0o

So the functional is

F = f L(R,Z,h oVh o)dRdZ (10)

It remains to find h 0(R,Z) to make F stationary in Q for

given Dirichlet boundary conditions. This will be done by

use of the finite element method.

15



III. COMPUTATIONAL PROCEDURES

The constructions of the V and T matrices have little

in comm-on other than the coordinate system. The finite

element method is used to generate V. T i derived from

the magnetic vector potential in this perfect conductor case,

while if a dielectric body were used, both electric and

magnetic vector potentials would be required to construct T..

The use of numerical methods obviously implies that the

current and fields will be found only at discrete points.

As discussed in Section II.C., only points in a constant

azimuth meridian plane need be considered. The region between

the wire surface and the boundary at which the fields are to

be calculated is divided into triangular elements. These are

areas of integration in the finite element method. The divi-

sions and the nodal numbering scheme are shown in Figure 3.

There are a total of NWq points along the wire, and NB points

along the boundary.

A. FINITE ELEMENT METHOD

This method is one whereby the region of interest is divided

into a number of overlapping subregions of a specified shape.

Then the problem solution function 9 is approximated by

defining the solution as a linear combin~ation of the products

of unknown coefficients with "basis"~ functions defined over

16



over each of the overlapping subregions. These basis

functions are usually sectionally linear, and, in very simple

terms, are used to "fill in" the approximation between points.

A weighted residual approximation of the solution 9, commonly

known as the Ritz method, can then be made by the application

of the discretized Euler-Lagrange variational procedure,

subject to the appropriate boundary conditions. The rigorous

development of each of these parts of the finite element

method is not necessary here, but the background required for

a basic understanding of the method will be given below.

N, +,N;

R

2 NW+2

0

Figure 3. Solution Points

17



1. Basis Function Expansions

In order to solve a problem numerically, some method

of approximating the solution using a finite number of

unknowns must be found. Also, the method's convenience must

be balanced against the desired accuracy. A general term

for such an approximation is a "basis function expansion"

of a function 6 [2]. The type of expansion used in the

finite element method for a one-dimensional problem is given

by

N
CNX) = S 9ui(X) (11)

i= 1

where 5N is the discrete version of 9, the 0. are the

values of 6(X) at the discrete points X., and the Ui(X)

are the basis functions at the points X.. Linear basis

functions are usually employed in FEM calculations, though

quadratic or higher-order polynomial functions could be

used to obtain greater accuracy. Linear basis functions for

a one-dimensional problem are shown in Figure 4. Note that

the node spacing is irregular. This allows tailoring of the

expansion to better approximate the solution, and, in two

or higher dimensional cases, may be necessary because of the

shape of the solution region. If neither of these are

necessary, regular node spacing can be used with some advan-

tage to reduce complexity. The basis fucntions u. are seen

18



to have unit value at their respective nodes xi t and are

zero for x il x.Xi+ , l<i<N

Y u1  u2 (x) u K  u

X X x 3 ....... XK ....... - X

Figure 4. Linear Basis Functions

A two-dimensional linear basis function often used is

the "pyramid" function; its two-dimensional projection is

shown in Figure 5. A rectangular region 2 in the x-y plane

has been discretized by division into the triangular elements

shown. The boundary 3Q32 in Q of the function u3 ,2 (x,y) has

been outlined to make the shape clear.

The function has a value of one at the center node, and

is zero along and outside the periphery. Its equation can

be written

u (x,Y) u (xy), j = a,f (12)
32 32 ,) ~

where the component functions are planar segments of the form

u32 cx 4 y+y (13)

19



Y

Rectangular

3 __ 
region Q

Figure 5. Two-Dimensional Finite Element Mesh

Then o,3 ,y must be functions of (x,y) so that ui2 (x3 ,y2)=l,

3 2(xY)=,i 3, j 2, for integer (i,j).

As in the one-dimensional case, the basis functions over-

lap; that is, a function is centered around each node in the

region or on the boundary. Of course, on the boundary of

at least half of the function is "lost" outside . The

overall appearance of the basis function array in three di-

mensions might be imagined as a crystalline surface of multi-

faceted peaks centered over the nodes, with raised valleys

running between. If a function 9(x,y) were defined over 2,

20

i\C_
.



its expansion could be written

7 6

6N(xy) : Qijuij(x,y) (14)

i=j j=l

If the exact values of ij were known, 6N would be a multi-

faceted approximation to 6(x,y), equal only at the nodes xii.

Then, within the limitations of machine accuracy and computing

time, the greater the node density the better the approxima-

tion eN will be.

The wire scattering problem expands the field, h 0o, by

use of these pyramid basis functions. Referring to Figure 3,

it is seen that the region Q covered by the triangular ele-

ments will not contain any complete pyramids, but this is not

really necessary. It will prove convenient to use a sequen-

tial node coordinate system rather than the (i,j) Cartesian

description of (12). Let n be the node coordinate, where

ln<N, N=NW+NB. Then the approximating expansion hON of h o

can be written

N
hON(R,Z) = J hnun(R,Z) (15)

n=1

Note that the top and bottom wire nodes are not represented.

This is because of the assumption that h =0 at these points.

Two field vectors can now be defined. The nodal wire-

surface field is

h n= h n n 1, N (16)

w -nw

21



The nodal boundary field is

hB = !n n : Hw+l, N (17)

These vectors contain the approximate values of h o at the

nodes of the triangular mesh.

2. Euler-Lagrange Variational Technique

Consider the differential equation A9=f, which together

with certain boundary conditions, describes some physical pro-

blem in a region Q. The complex scalar wave (Helmholz)

equation, A =[7 2+k2]9=0 is an example. The differential equa-

tion is related to the functional F(9), where

F(6) L(8, Dxe, Dy, x, y)dQ (18)

This relationship is a fundamental result of the calculus of

variations, and simply stated, is the fact that the functional

F(e) is stationary at the "point" S which also satisfies the0

differential equation. That is, if the particular function S0

can be found which causes the derivative (or first variation)

of F(S) to vanish, then F(e) is said to be stationary, and

o is said to be the stationary point of F(e); e0 is then

the solution of the equation Ae=f [5].

Observe that the vanishing of dF/dO implies that a

minimum, maximum, or saddle point of F occurs 9=e o. In many

physical problems F is associated with the potential energy

of systems and thus finding e° is sometimes termed the

22



"minimization" of F. The problem now presents a choice of

computational methods. The differential equation might be

approximated by a discrete system, say finite differences,

or the variational integral, F, can be "minimized" over a

finite number of trial functions, as is done by the finite

element method.

It is necessary in this procedure to find the Lagrangian

L for use in F(6) [4]. This L must be such that its insertion

in the Euler-Lagrange equation produces the differential

equation that is to be solved. As an example, the Euler-

Lagrange equation for the two independent variable case is

given by

aL a IL IL 0 (19)
e ax [aD6 a x y

There is no definite way to discover L for any given problem,

but it usually yields to informed guessing.

The problem's boundary conditions present no unmanageable

difficulties in this formulation. If 9 is specified on the

boundary (Dirichlet boundary conditions) nothing else need

be done. If e is unspecified on the boundard, the stationary

solution will automatically fulfill the Neumann boundary

condition, de 0, also known as the natural boundary condition.
dn

Boundary conditions of a more complicated type will require

the functional F to be modified, but this procedure will not

23



be necessary here. It can be easily shown by using the field

generating equations in [6], that the natural boundary condi-

tion here results in a zero tangential electric field on the

wire surface.

3. Application to the Thin-Wire Problem

As discussed in Section II, the driving force in the

scattering problem is the incident plane wave. Then, the

boundary conditions to be applied are the natural condition

along the wire, for nodes n=l, Nw, and a Dirichlet condition

along the outer boundary of Q; h o=ht (total field). The

Dirichlet condition h o=0 has also been imposed on the top

and bottom wire nodes. These correspond to boundary condi-

tions along the top and bottom node rows of a larger mesh,

as in Figure 5.

The minimization of F for the wire scattering problem

is carried out as follows. F is discretized by substituting

h for hlo, which yields the approximate functional

F(h N)= [fo0 {V(Rh • )Rr V(Rh N )}-Ri h 2 N ]dRdZ (20)

The exact functional F(h o) is made stationary about the

solution h by differentiating F with respect to h 0. This

makes F stationary about every point on h o Since the appro-

ximate solution is to be found only at a finite number (N )

of points, the functional needs to be made stationary only at

those points. This is done by a simultaneous solution of the

Nw stationary condition equations

24:



2 -dhi
dF [1vRh¢ .R h¢N

d. (hN) 2 R dhi  
7 Rh-M dh.dhh ah. h

dRdZ, i =N (21)w

where hi is the unknown value of h,, at the node n=i, and

1r=1. Writing h N explicitly,

N 11N

[l 7Rui.VR E hnun-Rui E hn]dRdZ=0, i=l,Nw (22)

nl n~l

N

or, since hn is a linear oDerat r wth no coordinate

n1i

dependence,
N

hn f [1VRu.*VRu -Ru.u ]dRdZ=0, i=l,Nw (23)
n R I n 2-fn

Boundary conditions at the top and bottom wire nodes

are already included in these equations. Application of the

total field boundary condition is accomplished by observing

that the h , n=N +1,N are known, where, using (15), hB=It.

So by splitting the sum the useful minimization equations

for F(h N) are found to be

N N
TO

C . + c n h = , i=l,Nw (24a)

n=N +1
w

25
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where

C : [7Ru. VRu -Ru u ]dRdZ (24b)
in n i n

The matrix equation to be used for computation can be

formed directly from (24). First, recall that the basis

functions un are zero on and outside of the boundary Qn"

This means that the product of non-overlapping basis func-

tions is zero. For example, in Figure 3, u,.ul=C. Thus

u .un = 0 , In-il > 2 (25a)

and

VRu = 7Ru , In-ij > 2 (25b)

This behavior is very useful in that it produces banded

coefficient matrices. Special techniques can be used to

invert large banded matrices very quickly. Writing out a

few equations should make the matrix construction clear.

izl: Cllh 1 +Cl2h2 + ClNw+ 1 hNw+! + ClNw+ 2h\1w+2 =

i2l: C h +C h + C h
21h 1 22 223 3 + C2N +2hN +2C2N +3hN +3 - 0

w w wi=2 C21 1+C 2 2 + 2 h +C3Nw +2h Nw +Z+," +4 hN W+34

i=3: C3 2h+C h+C 3 4 h +C h +C h 0
22 33 3 33N +3 3N +4N +4

(26)

26
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The system equation can therefore be written

Ah = -Bh (27)

where the N xN coefficient matrix A contains the basis

function integrals for i=lNw n=l,N w and the Nw xN w +1 matrix

B contains the integrals for i=l,Nw ,n=N w +,N. Both A and B

are diagonal and have the forms

X X X X

A: B:
XX X 0 XX 0

SX X X X X

0 X X X 0X X

X X _jX !X

The wire field h due to the boundary field hB is now-w -

known, since

hw=A 1 BhB ht (28)

Equation (28) is the forward path in the system of Figure 1.

The actual calculation of the A in B. will be discussed inin in

Section III.C.

B. SCATTERED FIELD INTEGRAL

1. Vector Potential Formulation

The development of the feedback path is less compli-

cated than the forward path construction given in III.A. The
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thin-wire approximation is applied to the familiar classical

vector potential T, and a matrix equation formulation built

on a one-dimensional basis function expansion. The result

will be an approximation giving the near field produced by a

wire-surface field or current.

From the inhomogeneous Helmholz equation

V 2A + k2A = -j (29)

it is seen, since Y=J ZZ by assumption, that A=AzZ. Then it

follows from the vector potential defining equation

H= V xA (30)

that

H1 =--L A (R,Z) (31)

aR z

The azimuthal invariance of H has been made explicit in (31).

A commonly used expression for A [1] is given as an

integration of a weighted point-source Green's function G(r',r)

over the current source where

G(I' ,r) - 1 e o r (32)

Then
T()TF)(rcV (33)

vI

This general situation is shown in Figure 6.
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0

Figure 6

2. Scattered Field Matrix Equation

The formulation is easily applied to the thin-wire

case. Recalling that ho = noN3 and assuming that the

current J_ lies along the Z axis, K, for the thin wire, is

j1iDI
noAz(R,Z) = Ll (Z') D Rad~dZ' (34)

where, IDI=R2 +(Z-Z) , as seen in Figure 7, and the integra-

tion is over S, the wire surface. Now, putting (34) in (31)

yields

RaR f I /2 Z L  D j IDd
hh (R,Z)C-2 ho(Z')[ 2  + 3 le-Ddz' (35)

1 /2 Z L IDI
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This h 0(R,Z) is approximately the scattered

field, hs (R,Z), radiated by the wire carrying an induced

current J This wire current, in the form of h 0(Z'), must

be approximated by a basis function expansion so that h s(R,Z)

can be computed. Since h (Z) is a function of Z only, the

one-dimensional linear basis functions shown in Figure 4 may

be used. Then, for the same N nodes along the wire, as inw

Section III.A.,

N

h0o(Z') = r hnun(Z') (36)

Notice that (36) defines the same nodal surface-field vector

as (16). Substitution of (36) into (35) produces
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DII

n-I
(3.7)

The limits of integration reduce from +ZL/ to Z'n ,

Zt because the basis function u (Z') is zero for Z' >'>nn+l R n-

Equation (37) can be used to construct the T matrix by noting

that (37) gives the scattered field at one point (R,Z). Then,

by choosing a number of points in some region, a discrete

field approximation can be constructed. The points chosen

will be, unsurprisingly, just those NB points along the finite

element mesh border. So the matrix equation is

h T h (38a)
-s 2n -W

where

"I -1D

Tbn - a jn(') + 11)1d' (3b
n-i

is the coefficient of the n-th value of the wire field, and

Tbh is one term of the b-th value of the scattered field.

Finally, since h h + hinc, an expression for the

total field in terms of the incident and wire fields is

h T h T (38)

-t -inc -w
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The scattered field h found in (38) is a near field-S

expression. It is valid at any distance from the wire, but

this behavior does not extend to the entire problem. If h-s

were to be found at some large distance from the wire, simply

extending the radial width of 2 would not suffice. This is

because FEM calculation accuracy degrades as the distance

from the wire to the boundary, BL, increases. The magnitudes

of the electrostatic and induction fields decrease rapidly

as R increases, so the point is quickly reached where they

become effectively zero as far as computer calculations are

concerned. The resulting incorrect total field values are a

part of the FEM R-related inaccuracies. The greater part of

the FEM error is found in the basis function expansion of h

The planar-section basis functions used are unable to

accurately model the near field over a large radial distance,

where "large", in this case, may be 1/100 of the wavelength.

To solve the far-field problem, the near-field solu-

tion must first be obtained for the wire field h . Then (38)--w

may be used to find h along any boundary. For typical far---S

field problems, assumptions may be made to reduce the integral's

complexity. Let $ be the angle of the far-field point,

measured from the Z axis at the origin. Then R=k 0 r sir1,

where r is the spherical radius of the point. The far-field

assumption is

IDI = k0r - Z' cosa (in phase term of (38b)) (40a)

IDI = k r (in denominators) (40b)
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So the radiation field along a spherical arc of radius r is

given by (38), where Tbn is

n+l

Tb * a si ]jkor j (Z)u 'c Z  (.41)

n-1

C. PROBLEM IMPLEMENTATION

Combining equations (27) and (39) gives

h -(A+BT) B h (42)-- W ~~ ~ -inc

This is, of course, the same equation as is represented in

Figure 1, where V = -A-lB. The system "transfer matrix"

is defined by

h (I - V • T) - 1 V h. (43a)
-w - inc

Simple matrix algebra leads to a simplification of this

result

h = -(A + B T) -  B h. (43b)
-W .- inc

Multiplying this equation by (A+BT) yields (42), so the system

equation as derived does behave as a feedback system.

The only variable remaining to be identified is hinc, the

incident field vector. The incident plane wave h. can be

inc
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expressed in the normalized cylindrical coordinate system as

h (R,Z) = je- ZCc s a J1 '(Rsina) (44)

where J ' is the derivative of the zeroth-order Bessel func-0

tion. Since R will be kept small, as discussed in Section

III.B., (44 ) may be simplified by replacing J ' (Rsina)0

with the first few terms of its series expansion

JRsina ..Rsina)3 (Rsin(Jo 2 1(6sin) 2 + T

Then h. may be calculated at the boundary nodes by use of-inc

(44) and (45).

Now that expressions for all of the quantities in (42) have

been found, the computer program can be devised to carry out

the calcuations. The use of an existing routine, CSMINV, for

the inversion of (A+BT) reduces the number of major computations

to two: equation (24b) for the A and B elements, and equation

(38b) for the scattered field coefficients Tb.

The integration of (34b) becomes algebraiciv messy, bu is

otherwide straightforward. Because of the basis function's

behavior, the integration area is reduced from n to M, the

region of non-zero overlap of ui and u . This integrationi n

over M may then be written as a sum of integrations over the

triangular elements comprising r, since un is piecewise planar

in the elements. Also, note that Cin s independent of Z in

3.4



the sense that the integration for any pair (i,n) of nodes,

will be the same if that pair is translated along the wire.

This means that one wire node may be selected, and the inte-

gZ'als concerning that node and its immediate neighbors will

be the only ones required to construct A and B. For example,

select i=2. Then C21' C22' C2N +2 and C2N +3 are the only
w w

integrals that need to be calculated. (Node three is not

being neglected. Equation (24b) shows that C23 ' C32' but

this is ust C2 moved ip one element. So C =C.)

In this simple narrow mesh case, the integration of (24b)

is required over a: mnst three elements (C,), and the size

and shape of all elements is the same. F-r many problems

this will not be the case. For arge mesnes, and especially

for skewed alements, it becomes very :onvenient computa-

zionally to change from a global to a local node system.

instead of moving from note to node, czul ating all the

coefficients about each node one at a time, an algcrithm

is devised to move from elemen: to element, finding the

integrals invclving the three corner nodes over each element.

This procedure effects a considerable simplification in the

"bookkeeping" necessary to keep track of the nodal indices

and coordinates.

The local node system employed here is shown in Figure 8.

The integrals of the combinations of local nodes (k,l) are

found over a upper and lower element. Then the integrals

can be placed in their proper global positions. As an example,
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Upper 3 2

Element U 1

1 L Lower
/2 3 Element

Figure 8. Local 'Node Indices

consider the upper element with global nodes (2,3,N w+3). The

integrations o: (24b) over U are found for local node pairs

(l,l),(l,2),(l,3),(3,!),(3,2), and (3,3). Then the local

node pair (1,l) integral, f(l,l) is out in A as one part in

three of C12 2 ' f(1,2) is one Dart in two of C2N +3 in B, and
w

f(!,3)=C in A. Also, 1(3,1)=C 32 , f(3,2) is part of C
23 13 '3L-W 3

and f(3,3) is part of C The remaining three local node

integrals over U are not needed in this case, but would be

used in larger meshes.

For the thin mesh used here, the local node procedure

improves only slightly the algorithm efficiency as compared

to a global node procedure. The principle reason for its use

was that an existing and successful subroutine was available

to do local node integrations. This routine is named VARELA

in the program. It requires only the local node ordering

scheme and the coordinate (R,Z) of each local node to produce
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a three by three matrix containing the integrations. As

discussed above, the wire-scattering problem needs only two

calls to VARELA to obtain the necessary values. The sub-

routine ABLOAD then fills A and B with these integrals.

The calculation of the coefficients Tbm is done by the

familiar Gaussian quadrature method, using eight unequally

spaced points. The interval of integration in (?8b) is split

into two segments, as in Fig:re 9. Then a change of variable

is affected sn that the limits of integration in each sub-

interval are X=+i to -1. The Gaussian procedure then gives

+1 n

f(x)dx T wi[f(xi)+f(-xi)] (46)

Si=l

where the values +v. and the weight factors w. are tabulated

in several references such as [6]. The code used to imple-

ment these integrations is contained in subroutine GTINT.

Eqiuati.oP (42) is coded in two subroutines, CFORM and

ZCURR. Routine CFORM produces the matrix prodiuict

(A+BT) B=C, while ZCURR calculates the inident field

vector h. according to (44) and (45), then finds the wire-inc

field vector h =C h.-W - -inc

1.0

U(Z)

Z

Z n_ 1  Zn  Z n+ 1

Figure 9
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IV. RESULTS AND ANALYSIS

in many other time-harmonic field problems, FEM calcula-

tions yield good results with perhaps 20 to 30 nodes per

wavelength- With higher node densities, say 50-75 perwavelength,

the solution breaks down due to roundoff error in the comDu-

tations. As will be shown, this does not appear to be the

case with the field feedback formulation. Nodal densities

as high as 100 per wavelength have been used withcut diffi-

culty. Indeed, these high densities are required in order to

achieve good convergence of the Formulation. As yet, no

satisfactory answer for this behavior has been found.

The cnly other parameter available to affect the conver-

gence of the solution is B, the wire-to-bonndary distance.

As mentioned in section III.B.2., this parameter can be ex-

pected to be critical in achieving a good field approximation.

Computed results show this to be true.

A great deal of effort was expended in looking for errors

in the formulation before the solution behavior with respect

to BL and NW was fully appreciated. It is still possible, no

matter how unlikely, that some error still exists. If an

error is present in the formulation, or code, it's effect is

quite peculiar. By comparison with other FEM problems, the

possible error causes two to three times the "normal" node
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density to be needed, but otherwise seems to have no effect.

That is, the results are satisfactory in all respects save

node density required for convergence.

The primary comparison case chosen was a one-half wave-

length wire with a radius of 1/50 wavelength. This case was

a compromise forced by excessive required computing for long-r

wires and questionable integral equation comparison results

with shorter wires. These other cases were looked at, and

some example results are included here. Their investigation,

however, has not been exhaustively completed due to lack of

time.

A. INTEGRAL EQUATION COMPARISON

The basis used for judging the convergence of the FF!

computation was a standard and successful type of integral

equation formulation, Hallen's equation for scattering by

a thin conductive cylinder. This method assumes a = directed

current density, and finds this wire current by a simultaneous

solution of two expressions for the vector potential, A. One

equation is just equation (33). The second is a different

form of equation (20)

12 + k 2A = jwe Ts(F) (47)

where Es(r) is the scattered electric field. Simple manipu-

lations yield the integral equation for 1(z'), [7J

39



L z

J I(Z')O(Z,Z')dZ' - I(Z') Z(Z') sink (Z-Z')dZ'

+ CsinkZ+D cos kZ - U(Z) (48)

where A is an impedance per unit length, C and D are con-

starts of integration, and U contains the incident field.

Equation (48) is coded in subroutine INTEQ.

Results for the 1/2 x 1/50 wavelength case are shown on

pages A-1 through A-38 of Appendix A. F3 calculations are

shown as a solid line, while integral equation computations

are displayed as the "X" curve. The parameters of each case

are given below the graph. The magnitude plots are scaled

in milliamperes along x, and wavelengths along y. The wire

is to be seen lying along the y axis, and is conveniently

demarcated by the zero end values of the integral equation

curve. The current phase plots have the same y axis units,

and are scaled in degrees along x.

3Graphs A-I through A-24 show F convergence with an
increasing number of nodes. Values of N are 20,40,70 and

w

100, with three plane wave incidence angles (ALPHA) used in

each case. In these plots, the plane wave is incident from

the upper right for ALPHA=30 and 60 degrees. ALPHA=90 is

broadside incidence. Convergence of the current magnitude
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is plainly seen at all incidence angles. For a=90 the

error is 15.5% at the wire center for N =20, but only 2.5% forw

N w =70. Similarly, the Dhase error decreases from 180 to 10.

Comparing the N :73 and N =100 cases, it is seen that thew w

extra nodes make very little difference in the quality of the

solution. Convergence has been essentially accomplished at

N w =70, and the additional memory and computing time for Nw =100

are not really necessary. The convergence is less satisfying

for incidence angles other than 900. At ALPHA=30 ° , for example,

the magnitude is not skewed quite enough, while the phase error

increases toward the wire bottom. This situation does not

imDrove as N increases.
w

Graphs A-25 through A-38 show FFM convergence as a function

of B.. All F3 calculations are made with N =28. The behavior
L w

shown in these plots is characteristic of all cases of wire

length and radius. For B much too large, the magnitude is

too low and the phase is off by as much as 900 As 3L decreases,

the magnitude rises, overshoots, and then settles back towards

the correct, convergent value. The phase moves smoothly down

to the correct value. Notice that the F3 curves are nearly

identical for DR:DZ/32 and DR=DZ/64. This implies that

convergence has been reached by the time DR has decreased to

LZ/32, or BL=.OOOS 0o  For this case the convergence point of

BL is actually about B L= Olo , as shown in A-1 through A-25.

Results for several other cases of wire length and radius

are shown in Appendix B. The one and two wavelength wire
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calculations show that more nodes are required, assuming that

B L= 002).0 is still adequate since A Lhas not changed. If 70

nodes are required for a good answer at Z, LX 0/2, then for

two wavelengths as many as 300 nodes might be necessary.

Similarly, well over 100 nodes could be needed for the one

wavelength wire. The one wavelength case indicates that

this is probably true. The F 3solution for N w=100 is percep-

tibly bDetter than the N w=70 solution, especially for off-axis

incidence angles.

Appendix C contains graphs for two different cases:

A L=1/10OX 0while Z L=X 0/2 or Z L= 0/4. Graphs C-l through C-4

again show convergence value is no longer B 0=01\X , but is

smaller than B L=' 0005X 0 .

Plots C-7 through C-10 show the quarter-wavelength wire

case. It appears from the FFM curves that convergence has

been almost reached for N w =40 This calls into question

the accuracy of the integral equation solution. This possible

inaccuracy should not be too surprising, however, since the

wire is relatively thick for it's length, and the integral

equation does much better for very thin wires.

An "error isolation" check was made on the F3system by

testing the feedback path. A fictitious sinusoidal wire

current was generated and its radiated field calculated via

h S=T h . This field was compared to that given in reference

[8]. The comparison is shown in plots C-il and 0-12. The

two field calculations are equal, to the fourth significant

digit. This indicates that the feedback path formulation and

program coding is correct.



B. ERROR ANALYSIS

Consideration of the near field behavior reveals the reason

for the critical dependence of the solution on BL . The magne-
L'

tic field magnitude in the v'ery near field is dominated by a

I/R2 term, as can be deduced from equation (37). This is

depicted in Figure 10. Also shown are two dashed lines which

are the linear basis function expansion of the field. It is

clear from the figure that the approximation of the field

deteriorates as AL decreases, if BL is held constant. Thus

it is seen why BL=.001A0 is adequate for A L=.02X while

BL.000XSX to obtain the best convergence with AL=.Ol o" It

is noted, however, that even at this best convergence value

of BL, the F3 solution is not as close to the integral equation

solution as in the AL =.02Xo, BL=.001X case. This fact can

also be explained by consideration of the basis function

approximation's behavior. While decreasing BL improves the

field approximation very near the wire, the approximation

becomes worse in the neighborhood of RB L .

It thus appears that there is a limit to the usefulness

of this formulation of the F3 solution to the wire-scattering

problem. The primary difficulty lies in the inaccuracy of

the linear basis function expansion used in the FEM calculation.

A much better basis function may contain a term proportional

to 1/R. This would greatly reduce the sensitivity of the

solution to BL.
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There is another source of error which is inherent in

any sort of computer solution: roundoff. Simple calculations

will be affected in the sixth or seventh significant digit by

the use of single-precision arithmetic on the IBM-360. If

only a few operations were required, this error could be

ignored. But when solving large systems of equations many

thousands of operations are required, and accuracy can be

severely degraded.

A rough guide to the degree of trust to be placed in a

solution can be had in the condition number of an inverted

matrix. This number provides an upper bound on error propa-

gation in a system due to the inaccuracy of finite-precision
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arithmetic. For example, in the system X = A-lY, a condition

number of 1000 for A - would cause errors in the third signi-

ficant digit of Y to appear as errors in the third, second or

even first significant digit of X.

This condition number is a measure of the similarity of

the system equations. In the wire-scatterer case, as the

solution points are placed closer tooether, the field values

at these nodes become more indistinouishable. Hence the

equations relating the field values at neighboring nodes

become more nearly the same. The system solution, then,

becomes sensitive to errors in the less significant digits.

Condition numbers of system matrices for the cases dis-

cussed here range from about 250 to 1000. Cases with fewer

nodes and larger values of B have lower condition numbers,C L

while as Nw increases and/or BL decreases, the condition

num_'n' increases rapidly. This is another reason why a good

solution is more difficult to achieve for very thin or long

wires. The use of a basis function more suited to the field

behavior would allow larger values of B to be employed. This
L

would lower the system condition number significantly, and

improve the solution's accuracy and trustworthiness. Other

than this and keeping N as small as possible, there is
w

nothing that can be done to avoid the problems reflected in

the condition number.

Even if the errors mentioned above could be eliminated,

the results of both the F3 and integral equation calculations
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would still not represent the fields with complete accuracy.

The assumptions made in both formulations are not strictly

true for any wire of finite thickness. Current flows on

the surface of the wire, not in the center, as assumed in

the vector potential formulation.

Field phase variation from side to side of the wire is not

zero, so there is anazimuthal component of current as well as the

Z-directed current assumed. And because this -directed

current exists, the current is not zero at the wire ends.

But, since essentially the same types of approximations are

made for both solution methods, it is not possible to ascer-

tain, from the comparisons made here, the degree to which

either solution represents the actual fields.
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V. CONCLUSIONS

As a result of this investigation, the field-feedback

formulation has been shown to be a sound technique for the

computation of electromagnetic scattering problems. It has

been demonstrated that F 3calculations compare very favorably

with results obtained by the conventional integral equation

fomulation. The success of this initial development is not

unqualified, however. The two deficiencies previously dis-

cussed, basis function unsuitability and excessive number of

required nodes, could present formidable difficulties in

Droblems where a priori knowledge of field behavior is not

available, or where bodies large compared to a wavelength are

used.

The discrepancy between required and expected node

density is particularly troublesome, as this fact is as yet

unexplained. If high node densities are actually required

by the method and are not just the result of some formulational

error, then the attendant large matrices will limit the use-

fulness of F 3computations because of the great amount of com-

puter memory required.

In any case, the flexibility of the finite-element method

when used in the coupled-azimuthal potential formulation

should allow numerous heretofore difficult problems to be

attacked. The ease with which mixed boundary conditions can
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be met for complicated inhomogeneous scattering bodies, and

the accuracy and simplicity of the vector potential formu-

lation promise a wide applicability for the field feedback

formulation.
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